EXECUTIVE SUMMARY

Demonstration of Artificial
Intelligence Leak Detection
Technology for Real-Time Drinking
Water Distribution System Leak
Monitoring

Hunter Klein

Andrew Drucker

Steven Fann

Hunter Klein

Naval Facilities Command
Engineering and Expeditionary
Warfare Center

March 2024

ESTCP Project EW21-5093 DISTRIBUTION STATEMENT A
This document has been cleared for public release.



ESTCP EXECUTIVE SUMMARY
EW21-5093

TABLE OF CONTENTS

Page

1.0 INTRODUCTION ..ottt sttt ettt 1
2.0 OBJIECTIVES L.ttt ettt ettt ettt et et 2
3.0 TECHNOLOGY DESCRIPTION .....cooiiiiiiiiiiiiiiieeeeeee ettt 2
3.1 TEST DESIGN ..ottt ettt sttt 3

3.2 DEMONSTRATION TESTS... .ottt 5

4.0 PERFORMANCE ASSESSMENT ..ottt 7
4.1 BASELINE LEARNINGE.....cciiiitiiiitiitee ettt ettt 7

4.2 LEAK DETECTION ...coiiiiiiiiiiie ettt ettt st e s 9

4.3 TRANSIENT PRESSURE DETECTION .....ccoiiiiiiiiiiiiiiiieeeeeeececeeee e 10

4.4 LEAK LOCALIZATION ..ottt 11

5.0 COST ASSESSMENT ...ttt ettt sttt et e st e e st e e sbee e 12
6.0 IMPLEMENTATION ISSUES ...ttt 13
7.0 REFERENCES ...ttt ettt ettt e beesaneenn 14



LIST OF FIGURES

Page

Figure ES-1. Hydrant. Al for Wet Barrel Hydrants. ...........ccceoviieiiiiiniieeeeeeeeeee e 3
Figure ES-2.  Demonstration Sit€ Map. .......ccoecuieiiiiiiienieeieeiie ettt 3
Figure ES-3.  Wet Barrel Hydrant, as Retrofitted with hydrant. Al

Sensor Station at NBVC Port Hueneme Demonstration Site. ............ccccceeeueenneee. 4
Figure ES-4.  High-level System Architecture (Phase-II).........cccccoovieriiiieniiieeiieeeeeeeeeee 4
Figure ES-5. A Leak Simulated at the Sampling Station During Phase-I Testing....................... 5
Figure ES-6. An Apparatus Attached to a Hydrant for Automating the Leak Flow. .................. 6
Figure ES-7.  hydrant.Al Sensor Backhaul with a Wireless Communication

Module for Phase-I1. .........coouoiiiiiii et 6
Figure ES-8.  Acoustic Summary for Flow Test with Details Shown in Table ES-1................... 8
Figure ES-9.  Scatterplot and Corresponding Kernel Density Estimates of

Figure ES-10.
Figure ES-11.

Figure ES-12.

Figure ES-13.

Acoustic Data from a Flow Test (ref. Table ES-1), after

Transformation of Data Into Leak Features. ...........ccoooeeiiiniiiiiniiiencceeee 8
Overview of Baseline Learning & Leak Detection Model Testing Procedure....... 8
Heatmap of Model Performance Across Hydrants for:

Table ES-1.

Table ES-2.

Table ES-3.

Table ES-4.

Table ES-5.

(a) Baseline (b) Leak DeteCtion. ..........ccveeeuiiieiiieeiie et 10

Snapshot of a Pressure Transient Captured by the hydrant. Al

System at Hydrant 3..........c.cooiiiiiiiiiiiiiee et 11

Leak Location Estimate Obtained for an Optimal Cross-correlation

Threshold from a Leak Simulated............coocooviiiiniiiiniiniceeee 12

LIST OF TABLES
Page

Details of a Flow Test Conducted at the Location: Sampling Station
| Phase-1| 19 Jan 2023 ..ottt 6
Details of Automated Flow Tests Conducted Overnight
Over Multiple Days | Phase-L........ccccooiriiiiiiiniiiicceececeeece e 7
Details of an Automated Flow Test Conducted at the Location
Hydrant 2 | Phase-II | 1 Nov 2023—1 Mar 2024........cccccoiiiiiiieieeiieeeeeeeeeee e 7
Minimum Accuracy Returned by Al leak detection models
ON tEST AALASELS. ...vviiiiiieeiiie et ettt et e e ste e e stteeeseaeeeaaeeesaeeensaeesasaeesnseeenns 9
Life-cycle Cost ANALYSIS....c.uiciiiiiiiiieeiieeie ettt esite e see et eereeseessaeeaee e 13

1



ACRONYMS AND ABBREVIATIONS

Al
ATO

DoD
DWS

ESTCP
EXWC

GPM
GPS

iINFADS

NAVFAC
NBVC

PVC

RMF
ROI

UCLA

WDN

artificial intelligence
authority to operate

Department of Defense
Digital Water Solutions

Environmental Security Technology Certification Program
Expeditionary Warfare Center

gallons per minute
global positioning system

internet Navy Facilities Asset Data Store

Naval Facilities Engineering Systems Command
Naval Base Ventura County

polyvinyl chloride

risk management framework
return on investment

University of California, Los Angeles

water distribution network

111



ACKNOWLEDGMENTS

The project team wishes to thank the Environmental Security Technology Certification Program
(ESTCP) for funding and sponsoring this certification project. The project team is also grateful to
the Office of Naval Research’s Next Strategic Technology Evaluation Program for funding an
initial evaluation study of the technology prior to pursuing its demonstration. The authors offer
their gratitude to the installation Naval Base Ventura County (NBVC), Port Hueneme, California
and their public works department personnel who provided the test and demonstration host
facilities and the needed assistance and support throughout the certification effort. The project
team also wants to acknowledge the Veterans To Energy Careers internship program for
supporting Mr. Brian Vu, who greatly contributed to the success of the project.

v



1.0 INTRODUCTION

This report is the technical final report for the project titled “Demonstration of Artificial
Intelligence (A1) Leak Detection Technology for Real-Time Drinking Water Distribution System
Leak Monitoring”. The demonstration addressed the need to identify leaks (identification covers
both detection and localization) cost-effectively in Department of Defense (DoD) water
distribution systems (2021 ESTCP Need # D8 Enhanced Installation Water Resiliency) through
an online artificial intelligence (Al) leak detection system. The demonstration was conducted by
Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC) at Naval Base
Ventura County (NBVC) in Port Hueneme, California.

Recent studies [1], [2] showed that North America’s water infrastructure is in a steep decline,
manifesting in the form of increasingly prevalent water mains breaks and non-surfacing leaks.
Beyond water loss, these types of events could also lead to flooding, service disruptions and
increased strain on the distribution network. Pipe break rates have increased by an alarming 27%
in the past six years. Data from the internet Navy Facilities Asset Data Store (iNFADS) showed that
the majority of the Navy’s water lines were either approaching or have exceeded their expected
useful life, with 67% of water lines over 40 years old, and 37% over the age of 65. iNFADS also
showed that 57% of the water line inventory was currently in either poor or failing condition,
leading to an increasing likelihood of sudden water main breaks and non-surfacing leaks. In
particular, non-surfacing leaks were challenging to address, as many of these leaks often remained
undetected underground, resulting in significant water losses over time. Efficient strategies to detect
and locate leaks in DoD’s water distribution systems are needed to help improve water
conservation efforts and enhance installation water system resiliency.

The leak detection technology deployed in the demonstration utilized a bespoke continuous
monitoring technology (hydrant.Al) developed by Digital Water Solutions (DWS) in tandem with
state-of-the-art leak localization algorithms developed by UCLA researchers. The hardware
consisted of a set of sensing devices, retrofittable to any existing fire hydrant, that provided the
ability to non-invasively detect and monitor for leaks and pressure transients within the water
distribution network (WDN). Sensor data from the devices could be sent to a server asynchronously
(i.e., offline) or in real-time (i.e., cellular based) where insights pertaining to leaks and pressure
events were extracted using machine learning before being sent to a user interface and alert system.
Unlike other monitoring technologies, which relied on listening for leaks through vibrations
propagated through the pipe wall, the demonstrated technology used a hydrophone to listen for
leaks directly in the water column. Crucially, this feature enabled the hydrant. Al system to detect
leaks in polyvinyl chloride (PVC) networks where traditional vibration-based technologies
struggled. Additionally, the hardware system was modified by DWS with bespoke firmware for
this project to offer the ability to customize the various sampling parameters to meet the specific
research and testing needs throughout each phase of the demonstration. The demonstration was
conducted in two discrete phases. The first phase considered an offline, asynchronous
implementation of the technology, where sensor data from each device was manually collected
and uploaded to the server for processing, while the second phase demonstrated a fully online
implementation in which sensor data could be automatically transmitted to the secured server in
real-time via cellular connectivity.



2.0 OBJECTIVES

The main objective of the project was to demonstrate a new and powerful Al leak detection
technology (detection technology is used synonymously with identification to include both leak
detection and localization) for online leak monitoring in water distribution systems at DoD
installations. The demonstration was intended to test and evaluate the performance of this
technology by assessing its ability to detect and monitor leaks in a continuous monitoring setting.
During the set-up phase and periodically afterward, labeled acoustic data was used to train the
machine learning algorithms to differentiate leak-induced noise from confounding ambient noise
sources. Following the initial training period, the system switched to a continuous monitoring
mode to detect new leaks as they occurred in the network. The performance was assessed based
on the capability to detect and localize known, simulated leak events. The system was also capable
of detecting the occurrence of pressure transients (water hammers) and low/high-pressure events.
The project also performed a life-cycle cost analysis to compare the costs against the expected
water savings benefits generated by the technology over a 10-year period. Ultimately, the goal of
the demonstration was to help validate and de-risk the adoption of novel leak detection
technologies within DoD installations through provision of detailed information pertaining to the
implementation, application, cost, and efficacy.

3.0 TECHNOLOGY DESCRIPTION

The demonstrated technology offered a unique and comprehensive solution for monitoring of
WDNs. Unlike traditional surface-mounted vibration sensors, which are ineffective in detecting
and locating leaks in plastic (i.e., PVC) pipes, the demonstrated technology utilized a hydrophone
inserted directly in the water column to listen for leaks. This approach made the technology
effective at capturing leak noise regardless of the pipe material, while also providing the ability to
capture leaks over longer distances relative to traditional vibration sensors. In tandem with the
state-of-the-art hardware, the technology used novel Al and probabilistic methods to identify and
locate leaks in the collected acoustic data. The Al algorithms for leak detection—developed by
DWS—eliminated the need for historical data or pre-existing information regarding the network
layout or pipe material, which drastically simplified the onboarding process. The leak localization
algorithm used in the demonstration was developed at UCLA based on maximum likelihood
estimation—a powerful localization technique that is widely used in wireless networks.

With respect to hardware, the original design was intended for deployment in dry-barrel fire
hydrants. To accommodate the type of hydrant typical to NBVC and California (i.e., wet-barrel), a
new wet-barrel configuration for hydrant.Al was designed, prototyped, fabricated, and tested by
DWS prior to deployment at NBVC. The hardware component primarily consisted of a hydrant
retrofit kit (shown in Figure ES-1) that included a sensing array (hydrophone, thermocouple, and
pressure transducer), sensor backhaul, and a rechargeable 20 Ah battery. As with its dry-barrel
counterpart, the wet-barrel configuration was designed such that the retrofitted hydrant remained
fully functional.



Figure ES-1. Hydrant.Al for Wet Barrel Hydrants.

3.1 TEST DESIGN

Selection of the demonstration site and hydrants for installation of the sensor stations was
accomplished through extensive consultation with NAVFAC EXWC and NBVC staff. The
northwest corner of NBVC, Port Hueneme was seclected as the demonstration site with
consideration to various factors such as ease of access and minimal disruption to routine
operations. The demonstration site, location of the sensor stations and presumed layout of the
underground pipe network is shown in Figure ES-2. An example of a wet barrel hydrant, as
retrofitted with the hydrant.Al sensor station, is shown in Figure ES-3.

coxs
»

.

Figure ES-2. Demonstration Site Map.



Figure ES-3. Wet Barrel Hydrant, as Retrofitted with hydrant.AI Sensor Station at
NBVC Port Hueneme Demonstration Site.

The technology was demonstrated in two phases. Phase-I demonstrated an offline, asynchronous
deployment of the technology where the standard cellular communications module in the device
was replaced with a local storage module. Data from the devices was manually collected and
transferred to the server at scheduled intervals. In Phase-II, the wireless communication daughter
card was re-installed, enabling cellular communication with the standalone server and global
positioning system (GPS) connectivity which allowed for real-time delivery of sensor data and
over-the-air updating of sampling/collection parameters (Figure ES-7). Figure ES-4 shows the
high-level system architecture of the technology as deployed in Phase-II. This phased approach
also allowed the demonstration to commence while securing necessary cybersecurity approvals
for wireless data transfer. Separate approvals, granted through limited test event applications, were
required for each phase and authorized operation for six months.

Commercial
. Network
-.. Operator
R I I Navy
@. .D y Operator
AT Host
. Computer

4G Connected
Senscrs

Figure ES-4. High-level System Architecture (Phase-II).
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3.2 DEMONSTRATION TESTS

To ensure that the technology could be evaluated in the absence of naturally occurring leaks in the
WDN, leaks were simulated through controlled flow testing (5-30 gallons per minute (GPM)) at
several locations, comprised of two hydrants in the demonstration area and a sampling station
located near hydrant 2 (shown in Figure ES-5). Preliminary flow tests in Phase-I used leaks
simulated through the manual operation of the valve or hydrant nozzle, where the flow rate was
verified by measuring the time required to fill a container of known volume. Details of the
preliminary testing are shown in Table ES-1.

Following preliminary validation, subsequent tests were performed using an automatic leak
simulator as shown in Figure ES-6, which provided the flexibility to simulate leaks at any time of
the day. This method was considered practically advantageous as the tests could be scheduled to
automatically trigger the opening of the valve at a precise flow rate and time of day. The automatic
leak simulator was set to trigger overnight for a short duration during the period of minimum
background noise. To emulate a longstanding leak in the WDN, the automated leak simulations in
Phase-I ran from Feb to May 2023, the details of which are listed in Table ES-2. In Phase-1I, a total
of 79 flow tests were conducted. One test was performed every 24 hours and consisted of the
following cycle of events in the order: (i) no-leak — (i1) leak — (iii) no-leak. The acquired data from
daily automatic leak simulation was manually retrieved by connecting a laptop to the hydrant
retrofits on a bi-weekly basis. The data acquired on the laptop was then transferred to the
standalone server in UCLA where the data processing and analysis was conducted. A similar test
plan was adopted in Phase-II, with details shown in Table ES-3. With the availability of cellular
connectivity, data from the Phase-II testing was transmitted to the server in real-time.

The acoustic data collected from both Phase-I and II was subsequently used to train and validate
the leak detection and localization algorithms. The limited amount of data available in Phase-1 was
conducive to the deployment of unsupervised anomaly detection-based machine learning models
for leak detection. Relative to other types of machine learning models, anomaly detection models
can be deployed with significantly less training data and requires only data from one case (i.e., non-
leak case). In Phase-II, with sufficient labelled data available, a more powerful set of supervised
machine learning models was deployed for leak detection, replacing the anomaly detection models
used in Phase-I.

Figure ES-5. A Leak Simulated at the Sampling Station During Phase-I Testing.
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Figure ES-7. hydrant.Al Sensor Backhaul with a Wireless Communication Module for

Phase-II.
Table ES-1. Details of a Flow Test Conducted at the Location: Sampling Station | Phase-I
| 19 Jan 2023.
Condition (ll)nl;;itti:sl; Location Start time Finish time
Baseline — No leak 20 - 11:00 AM 11:20 AM
Light leak (8.5 GPM) 10 Sampling Station 11:20 AM 11:30 AM
Baseline — No leak 20 - 11:30 AM 11:50 AM
Hard leak (25.5 GPM) 10 Sampling Station 11:50 AM 12:00 PM
Baseline — No leak 20 - 12:00 PM 12:20 PM




Table ES-2. Details of Automated Flow Tests Conducted Overnight Over Multiple Days |

Phase-1.
Range of dates for overnight Location Flow rate (GPM)
flow tests
16 Feb 2023 — 17 Feb 2023 Hydrant 2 30
18 Feb 2023 — 23 Feb 2023 Hydrant 2 10
24 Feb 2023 — 20 Apr 2023 Hydrant 2 20
21 Apr 2023 — 4 May 2023 Fire Suppression System 10

Table ES-3. Details of an Automated Flow Test Conducted at the Location Hydrant 2 |
Phase-II | 1 Nov 2023—-1 Mar 2024.

Condition leration Location Start time Finish time
(minutes)
Baseline — No leak 5 - 12:50 AM 12:55 AM
Hard leak (30 GPM) 15 Hydrant 2 12:55 AM 01:10 AM
Baseline — No leak 13 - 01:10 AM 01:23 AM

4.0 PERFORMANCE ASSESSMENT

A summary of all data analysis conducted in support of the assessment of the performance
objectives is presented hereafter.

4.1 BASELINE LEARNING

The Al leak detection models were built upon a foundation of both labelled and unlabeled acoustic
baseline data collected over various time periods spanning from December 2022 to January 2023.
During these data collection phases, particular emphasis was placed on gathering information during
the late-night hours between 2-5 AM, a period characterized by minimal usage activity within the
distribution network. Acoustic data was pre-processed to remove outliers and transformed into leak-
sensitive features for training the leak detection models. The importance of using leak-sensitive
features as inputs to the leak detection models as opposed to raw acoustic data can be shown using
the acoustic data collected from the 19 Jan 2023 daytime flow test in Figure ES-8. Due to the high
background noise present during the day, the simulated leaks in Figure ES-8 showed no discernable
change in the raw acoustic noise. Hence, a machine learning model trained on the raw acoustic noise
would not be able to detect the simulated leaks. The leak-sensitive features used in Phase-I were
developed specifically by DWS for such scenarios—to detect leaks obscured by background noise.
An example of how the leak-sensitive features were able to separate leak data from non-leak data is
shown in Figure ES-9. An overview of the main steps involved in baseline learning and leak
detection model training and testing are shown in Figure ES-10.



Flow Test 2 (19 Jan 2023); Acoustic Summary

Baseline 1 Light Leak 1

Acoustic Noise (Pa)
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Figure ES-8. Acoustic Summary for Flow Test with Details Shown in Table ES-1.
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Figure ES-9. Scatterplot and Corresponding Kernel Density Estimates of Acoustic Data
from a Flow Test (ref. Table ES-1), after Transformation of Data into Leak Features.

Step 1: Baseline Collection and Leak Detection Model Training
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Detection Models

Compare Model
Predictions to
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Figure ES-10. Overview of Baseline Learning & Leak Detection Model Testing Procedure.



4.2 LEAK DETECTION

Features extracted from the acoustic data were used to train a suite of 11 unique, machine-learning
models. For Phase-I, the minimum accuracy returned by the best Al leak detection model for each
hydrant, across three different simulated leak events is shown in Table ES-4. Table ES-4 also
shows that the performance of the Al leak detection models was consistent across hydrants and
flow tests. The error margin across all three flow tests can be attributed to several factors, including
erroneous or mislabeled points in the dataset and the limitation on the type of viable machine
models given the limited amount of data available in Phase-I.

Insights from time-frequency analysis led to improvements in Phase-II's leak detection process.
These included modifications to the filter bank used for pre-processing, enhancing the distinction
between nearby and distant leaks. The F1 scores (a measure of a model’s accuracy) for each model
from the baseline and leak detection in Phase-II are shown in Figure ES-11a and ES-11b,
respectively. During baseline learning (Figure ES-11a), the XGBoost and GBM Classifier models
were identified as the best-performing models, achieving the maximum F1 score of 100% across
all hydrants. During the leak detection phase (Figure ES-11b), the XGBoost model continued to
achieve the highest overall F1 score, with a minimum F1 score of 98% observed on Hydrants 3 and
4. Similarly, strong performance between the baseline and leak detection phases verified that the
models were not overfitting the training data, with only a marginal reduction in F1 score of 1-3%
observed on Hydrants 1, 3 and 4.

Table ES-4. Minimum Accuracy Returned by Al leak detection models on test datasets.

; c Fl
Evaluation Metric Test Case Ra(t):vs b Eant Overall
1 2 3 4 5
Flow Test 1 - 5-10
Daytime (Peak gal/min | 93:80% | 96.70% | 98.00% | 99.50% | 97.60% | 97.1%
AT Leak System Usage) flow
Detection Flow Test 2 - 8-25
Minimum Al Daytime (Peak | gal/min | 95:70% | 94.90% | 100% | 97.70% | 96.20% | 96.9%
Leak Detection System Usage) flow
Model Accuracy
Flow Test 3 - 10,20, 30
Nighttime (Low gal/min -- 100.00% -- -- 93.50% | 96.8%
System Usage) flow
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Figure ES-11. Heatmap of Model Performance Across Hydrants for: (a) Baseline (b) Leak
Detection.

4.3  TRANSIENT PRESSURE DETECTION

The transition to wireless communications in Phase-II provided the ability to detect, capture, and
relay potential structural damaging pressure transients and pressure pattern anomalies in the
network in real time. Transients were automatically captured by the device when the pressure
measured on the device exceeded a set of user-defined thresholds. When a transient capture was
triggered, a complete waveform of the transient event was generated by saving the raw data sampled
from 30 seconds preceding the event trigger to 120 seconds following the trigger. These sampling
parameters are also user-configurable. An example of a pressure transient captured by the
hydrant.Al system is depicted in Figure ES-12. Each transient event detected in the system would
generate an “Event Card” on the user interface, which could be accessed to view the detailed
waveform as shown in Figure ES-12. In addition, an email or SMS alert could be configured to
notify the appropriate parties immediately to enable a timely response, if necessary.
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Event Data Dialog

59:15 12:59:30 12:59:45 13:00:00 13:00:15 13:00:30 13:00:45 13:01:00 13:01:15 13:01:30

Hydrant 0003

Figure ES-12. Snapshot of a Pressure Transient Captured by the hydrant.Al System at
Hydrant 3.

4.4 LEAK LOCALIZATION

The leak locations were estimated using a probabilistic method developed at UCLA [3]. The
method used cross-correlation-based maximum likelihood estimation (MLE) to estimate the most
likely location between two sensor pairs using the filtered acoustic measurements at the sensor
locations. In the step involving time delay selection from cross-correlation function plots, a
threshold was set to estimate the leak location. It was found that this threshold affected the leak
location. The leak location estimate for an optimal threshold is shown in Figure ES-13 for Phase-I
and Phase-II testing (details of the tests were mentioned in Tables ES-1 and ES-3). In Phase-1, the
simulated leak was at the sampling station; however, for Phase-II the simulated leak was shifted
to Hydrant 2 due to its compatibility with the automated leak equipment.

The distance between the leak estimate and the actual leak location were 2/ m and 32 m for Phase-
I and Phase-II results, respectively. The errors were primarily attributed to the following: (a)
inaccurate pipeline topographical maps leading to large uncertainties in the estimated pipe lengths;
and (b) the clock drift in the crystal-based real-time clocks used in the sensor stations leading to
desynchronization in measured time thereby yielding errors in the time delays of arrival. The
localization results were promising, considering that, even with these large uncertainties, the
localization results were localized to the pipe segment level (hence, satisfying the performance
criteria) and were within 5% of the total pipeline length in the WDN in which the leak search was
performed. It is important to underscore that the localization aspect of this technology was only
meant to provide an approximate region where the leak was present. Once a leak was detected and
localized to a region, the expectation was that inspection and maintenance crews would be
deployed to pinpoint the leak for repair activities.

11
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Figure ES-13.Leak Location Estimate Obtained for an Optimal Cross-correlation
Threshold from a Leak Simulated at (a) the Sampling Station for Data Acquired at 11:54
AM on 19-Jan-2023 (Phase-I), (b) Hydrant 2 for Data Acquired as 12:52 AM on 3-Nov-
2023 (Phase-II).

5.0 COST ASSESSMENT

A simple cost analysis for the technology was constructed by evaluating primary costs against
expected returns for a 5-unit deployment in a known high-risk or trouble region where leaks and
water loss are expected to be found. The analysis was conducted over the 10-year expected useful
life of the sensing stations. The main cost factors for this model comprised non-recurring capital
costs (e.g., sensing stations, batteries) and installation costs and annually recurring operating costs
(e.g., server upkeep, cellular data plans). The total capital cost for a 5-unit deployment (1 additional
spare unit and battery) in year 1 was determined to be $66,750, and the annual operating cost was
determined to be $5,700.

The implementation of these sensors allowed for the identification and repair of existing leaks as
well as subsequent early detection and prevention of new leaks within the monitored area of the
network. Consequently, the expected water savings or return on investment (ROI) could be assumed
to be constant year-over-year. The assumptions result in a linear relationship between the number
of the units deployed and cost or ROI, allowing the calculation to be scaled to any size of
deployments or capital investment.

Two types of leaks were considered in the water savings calculations: small, non-surfacing leaks (5-
30 GPM) which can run undetected for upwards of a year at a time; and, larger, sudden leaks or
breaks, which typically exhibit significantly higher flowrates (100-122 GPM), but surface shortly
after forming. The average annual 2024 water rate of $10.27/kgal for NBVC Port Hueneme was
used as the cost basis for the analysis. Based on these parameters, the estimated range for the total
expected annual water savings of the system was determined to be between $38,400 and $177,000.

The life cycle cost analysis using the average of these two extremes, is shown in Table ES-5, and
demonstrates that the payback period where the water savings exceeds the net present value occurs
within the first year, showing that the system can quickly recoup the initial capital investment
immediately through identification and subsequent repair of existing but unknown leaks in the
distribution system.

12



Table ES-5. Life-cycle Cost Analysis.

Life-cycle Cost Analysis - 5 Sensors

Year Discount Operating Costs Expecte.d Water Net Present Value
Factor Savings
0 1.0000 $ (5,700) | $ 107,784 | $ 40,409.5
1 0.9709 $ (5,534) | $ 104,645| $ 139,520.6
2 0.9426 $ (5,373) | § 101,597 | $ 235,745.0
3 0.9151 $ (5,216) |$ 98,638 $ 329,166.8
4 0.8885 $ (5,064) |$ 95,765| $ 419,867.5
5 0.8626 $ (4,917) |$ 92,976| $ 507,926.5
6 0.8375 $ 4,774) | $ 90,268 $ 593,420.6
7 0.8131 $ (4,635) |$ 87,639| $ 676,424.6
8 0.7894 $ (4,500) |$ 85,086| $ 757,011.0
9 0.7664 $ (4,369) | $ 82,608| $ 835,250.3
10 0.7441 $ (4,241) | $ 80,202| $ 911,210.7

6.0 IMPLEMENTATION ISSUES

The implementation issues encountered throughout the project can be categorized into
regulatory/cybersecurity-related or technical-related. Several measures were taken to mitigate the
regulatory or cybersecurity-related barriers to implementation. The development and testing of an
‘offline’ version of the monitoring technology in Phase-1 was one such approach. While viable,
the drawbacks of an offline deployment, such as the asynchronous nature of data collection and
information delivery, motivated the pursuit of the wireless implementation in Phase-II. In Phase-
I, it was determined that DoD deployment of the wirelessly interconnected Al leak detection
system would require an Authority to Operate (ATO) to maintain imposed cybersecurity protocols
per DoD Instruction 8510.01, Risk Management Framework (RMF) for DoD Information
Technology. In an effort to expedite the ATO process for future deployments, a partial, site-
agnostic RMF package was developed for the system in Phase-II. The RMF package was expected
to reduce documentation development efforts by between 70 to 80 percent and subsequently the
time necessary to obtain a final ATO.

In Phase-I, the primary technical issues encountered during the demonstration were all in relation
to the lack of wireless connectivity between the sensing stations, GPS satellites, and central server.
The lack of wireless connectivity meant that data collection was asynchronous, requiring an
individual to physically travel to each sensing station to collect data from each device for transfer
to the central server. The asynchronous nature of the data collection meant that potential actionable
information pertaining to leaks or pressure events could not be delivered in real-time. Additionally,
precise time synchronization between devices for leak localization between devices was also
difficult to achieve. The addition of wireless communication and GPS modules in Phase-II helped
to alleviate most of the concerns identified in Phase-I, enabling data and model insights to be
delivered in real-time. Furthermore, the GPS was able to act as a datum for clock synchronization.
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While the addition of GPS resulted in a noticeable improvement in localization accuracy,
additional precision in clock synchronization (in addition to good quality data on the pipe
configurations) would be required to further reduce localization errors. Further changes to improve
the time synchronization across devices were identified at the end of Phase-II and will be
implemented in the firmware for future deployments.
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