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1.0 INTRODUCTION 

This report is the technical final report for the project titled “Demonstration of Artificial 
Intelligence (AI) Leak Detection Technology for Real-Time Drinking Water Distribution System 
Leak Monitoring”. The demonstration addressed the need to identify leaks (identification covers 
both detection and localization) cost-effectively in Department of Defense (DoD) water 
distribution systems (2021 ESTCP Need # D8 Enhanced Installation Water Resiliency) through 
an online artificial intelligence (AI) leak detection system. The demonstration was conducted by 
Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC) at Naval Base 
Ventura County (NBVC) in Port Hueneme, California. 

Recent studies [1], [2] showed that North America’s water infrastructure is in a steep decline, 
manifesting in the form of increasingly prevalent water mains breaks and non-surfacing leaks. 
Beyond water loss, these types of events could also lead to flooding, service disruptions and 
increased strain on the distribution network. Pipe break rates have increased by an alarming 27% 
in the past six years. Data from the internet Navy Facilities Asset Data Store (iNFADS) showed that 
the majority of the Navy’s water lines were either approaching or have exceeded their expected 
useful life, with 67% of water lines over 40 years old, and 37% over the age of 65. iNFADS also 
showed that 57% of the water line inventory was currently in either poor or failing condition, 
leading to an increasing likelihood of sudden water main breaks and non-surfacing leaks. In 
particular, non-surfacing leaks were challenging to address, as many of these leaks often remained 
undetected underground, resulting in significant water losses over time. Efficient strategies to detect 
and locate leaks in DoD’s water distribution systems are needed to help improve water 
conservation efforts and enhance installation water system resiliency. 

The leak detection technology deployed in the demonstration utilized a bespoke continuous 
monitoring technology (hydrant.AI) developed by Digital Water Solutions (DWS) in tandem with 
state-of-the-art leak localization algorithms developed by UCLA researchers. The hardware 
consisted of a set of sensing devices, retrofittable to any existing fire hydrant, that provided the 
ability to non-invasively detect and monitor for leaks and pressure transients within the water 
distribution network (WDN). Sensor data from the devices could be sent to a server asynchronously 
(i.e., offline) or in real-time (i.e., cellular based) where insights pertaining to leaks and pressure 
events were extracted using machine learning before being sent to a user interface and alert system. 
Unlike other monitoring technologies, which relied on listening for leaks through vibrations 
propagated through the pipe wall, the demonstrated technology used a hydrophone to listen for 
leaks directly in the water column. Crucially, this feature enabled the hydrant.AI system to detect 
leaks in polyvinyl chloride (PVC) networks where traditional vibration-based technologies 
struggled. Additionally, the hardware system was modified by DWS with bespoke firmware for 
this project to offer the ability to customize the various sampling parameters to meet the specific 
research and testing needs throughout each phase of the demonstration. The demonstration was 
conducted in two discrete phases. The first phase considered an offline, asynchronous 
implementation of the technology, where sensor data from each device was manually collected 
and uploaded to the server for processing, while the second phase demonstrated a fully online 
implementation in which sensor data could be automatically transmitted to the secured server in 
real-time via cellular connectivity. 
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2.0 OBJECTIVES 

The main objective of the project was to demonstrate a new and powerful AI leak detection 
technology (detection technology is used synonymously with identification to include both leak 
detection and localization) for online leak monitoring in water distribution systems at DoD 
installations. The demonstration was intended to test and evaluate the performance of this 
technology by assessing its ability to detect and monitor leaks in a continuous monitoring setting. 
During the set-up phase and periodically afterward, labeled acoustic data was used to train the 
machine learning algorithms to differentiate leak-induced noise from confounding ambient noise 
sources. Following the initial training period, the system switched to a continuous monitoring 
mode to detect new leaks as they occurred in the network. The performance was assessed based 
on the capability to detect and localize known, simulated leak events. The system was also capable 
of detecting the occurrence of pressure transients (water hammers) and low/high-pressure events. 
The project also performed a life-cycle cost analysis to compare the costs against the expected 
water savings benefits generated by the technology over a 10-year period. Ultimately, the goal of 
the demonstration was to help validate and de-risk the adoption of novel leak detection 
technologies within DoD installations through provision of detailed information pertaining to the 
implementation, application, cost, and efficacy. 

3.0 TECHNOLOGY DESCRIPTION 

The demonstrated technology offered a unique and comprehensive solution for monitoring of 
WDNs. Unlike traditional surface-mounted vibration sensors, which are ineffective in detecting 
and locating leaks in plastic (i.e., PVC) pipes, the demonstrated technology utilized a hydrophone 
inserted directly in the water column to listen for leaks. This approach made the technology 
effective at capturing leak noise regardless of the pipe material, while also providing the ability to 
capture leaks over longer distances relative to traditional vibration sensors. In tandem with the 
state-of-the-art hardware, the technology used novel AI and probabilistic methods to identify and 
locate leaks in the collected acoustic data. The AI algorithms for leak detection—developed by 
DWS—eliminated the need for historical data or pre-existing information regarding the network 
layout or pipe material, which drastically simplified the onboarding process. The leak localization 
algorithm used in the demonstration was developed at UCLA based on maximum likelihood 
estimation—a powerful localization technique that is widely used in wireless networks. 

With respect to hardware, the original design was intended for deployment in dry-barrel fire 
hydrants. To accommodate the type of hydrant typical to NBVC and California (i.e., wet-barrel), a 
new wet-barrel configuration for hydrant.AI was designed, prototyped, fabricated, and tested by 
DWS prior to deployment at NBVC. The hardware component primarily consisted of a hydrant 
retrofit kit (shown in Figure ES-1) that included a sensing array (hydrophone, thermocouple, and 
pressure transducer), sensor backhaul, and a rechargeable 20 Ah battery. As with its dry-barrel 
counterpart, the wet-barrel configuration was designed such that the retrofitted hydrant remained 
fully functional. 
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Figure ES-1. Hydrant.AI for Wet Barrel Hydrants. 
 

3.1 TEST DESIGN 

Selection of the demonstration site and hydrants for installation of the sensor stations was 
accomplished through extensive consultation with NAVFAC EXWC and NBVC staff. The 
northwest corner of NBVC, Port Hueneme was selected as the demonstration site with 
consideration to various factors such as ease of access and minimal disruption to routine 
operations. The demonstration site, location of the sensor stations and presumed layout of the 
underground pipe network is shown in Figure ES-2. An example of a wet barrel hydrant, as 
retrofitted with the hydrant.AI sensor station, is shown in Figure ES-3. 

 

Figure ES-2. Demonstration Site Map. 
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Figure ES-3. Wet Barrel Hydrant, as Retrofitted with hydrant.AI Sensor Station at 
NBVC Port Hueneme Demonstration Site. 

The technology was demonstrated in two phases. Phase-I demonstrated an offline, asynchronous 
deployment of the technology where the standard cellular communications module in the device 
was replaced with a local storage module. Data from the devices was manually collected and 
transferred to the server at scheduled intervals. In Phase-II, the wireless communication daughter 
card was re-installed, enabling cellular communication with the standalone server and global 
positioning system (GPS) connectivity which allowed for real-time delivery of sensor data and 
over-the-air updating of sampling/collection parameters (Figure ES-7). Figure ES-4 shows the 
high-level system architecture of the technology as deployed in Phase-II. This phased approach 
also allowed the demonstration to commence while securing necessary cybersecurity approvals 
for wireless data transfer. Separate approvals, granted through limited test event applications, were 
required for each phase and authorized operation for six months. 

 

Figure ES-4. High-level System Architecture (Phase-II). 
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3.2 DEMONSTRATION TESTS 

To ensure that the technology could be evaluated in the absence of naturally occurring leaks in the 
WDN, leaks were simulated through controlled flow testing (5-30 gallons per minute (GPM)) at 
several locations, comprised of two hydrants in the demonstration area and a sampling station 
located near hydrant 2 (shown in Figure ES-5). Preliminary flow tests in Phase-I used leaks 
simulated through the manual operation of the valve or hydrant nozzle, where the flow rate was 
verified by measuring the time required to fill a container of known volume. Details of the 
preliminary testing are shown in Table ES-1. 

Following preliminary validation, subsequent tests were performed using an automatic leak 
simulator as shown in Figure ES-6, which provided the flexibility to simulate leaks at any time of 
the day. This method was considered practically advantageous as the tests could be scheduled to 
automatically trigger the opening of the valve at a precise flow rate and time of day. The automatic 
leak simulator was set to trigger overnight for a short duration during the period of minimum 
background noise. To emulate a longstanding leak in the WDN, the automated leak simulations in 
Phase-I ran from Feb to May 2023, the details of which are listed in Table ES-2. In Phase-I, a total 
of 79 flow tests were conducted. One test was performed every 24 hours and consisted of the 
following cycle of events in the order: (i) no-leak – (ii) leak – (iii) no-leak. The acquired data from 
daily automatic leak simulation was manually retrieved by connecting a laptop to the hydrant 
retrofits on a bi-weekly basis. The data acquired on the laptop was then transferred to the 
standalone server in UCLA where the data processing and analysis was conducted. A similar test 
plan was adopted in Phase-II, with details shown in Table ES-3. With the availability of cellular 
connectivity, data from the Phase-II testing was transmitted to the server in real-time. 

The acoustic data collected from both Phase-I and II was subsequently used to train and validate 
the leak detection and localization algorithms. The limited amount of data available in Phase-I was 
conducive to the deployment of unsupervised anomaly detection-based machine learning models 
for leak detection. Relative to other types of machine learning models, anomaly detection models 
can be deployed with significantly less training data and requires only data from one case (i.e., non-
leak case). In Phase-II, with sufficient labelled data available, a more powerful set of supervised 
machine learning models was deployed for leak detection, replacing the anomaly detection models 
used in Phase-I. 

 

Figure ES-5. A Leak Simulated at the Sampling Station During Phase-I Testing. 
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Figure ES-6.  An Apparatus Attached to a Hydrant for Automating the Leak Flow. 

 

Figure ES-7. hydrant.AI Sensor Backhaul with a Wireless Communication Module for 
Phase-II. 

Table ES-1. Details of a Flow Test Conducted at the Location: Sampling Station | Phase-I 
| 19 Jan 2023. 

Condition Duration 
(minutes) Location Start time Finish time 

Baseline – No leak 20 - 11:00 AM 11:20 AM 

Light leak (8.5 GPM) 10 Sampling Station 11:20 AM 11:30 AM 

Baseline – No leak 20 - 11:30 AM 11:50 AM 

Hard leak (25.5 GPM) 10 Sampling Station 11:50 AM 12:00 PM 

Baseline – No leak 20 - 12:00 PM 12:20 PM 
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Table ES-2. Details of Automated Flow Tests Conducted Overnight Over Multiple Days | 
Phase-I. 

Range of dates for overnight 
flow tests 

Location Flow rate (GPM) 

16 Feb 2023 – 17 Feb 2023 Hydrant 2 30 
18 Feb 2023 – 23 Feb 2023 Hydrant 2 10 
24 Feb 2023 – 20 Apr 2023 Hydrant 2 20 
21 Apr 2023 – 4 May 2023 Fire Suppression System 10 

 

Table ES-3. Details of an Automated Flow Test Conducted at the Location Hydrant 2 | 
Phase-II | 1 Nov 2023–1 Mar 2024. 

Condition Duration 
(minutes) 

Location Start time Finish time 

Baseline – No leak 5 - 12:50 AM 12:55 AM 
Hard leak (30 GPM) 15 Hydrant 2 12:55 AM 01:10 AM 
Baseline – No leak 13 - 01:10 AM 01:23 AM 

4.0 PERFORMANCE ASSESSMENT 

A summary of all data analysis conducted in support of the assessment of the performance 
objectives is presented hereafter. 

4.1 BASELINE LEARNING 

The AI leak detection models were built upon a foundation of both labelled and unlabeled acoustic 
baseline data collected over various time periods spanning from December 2022 to January 2023. 
During these data collection phases, particular emphasis was placed on gathering information during 
the late-night hours between 2-5 AM, a period characterized by minimal usage activity within the 
distribution network. Acoustic data was pre-processed to remove outliers and transformed into leak-
sensitive features for training the leak detection models. The importance of using leak-sensitive 
features as inputs to the leak detection models as opposed to raw acoustic data can be shown using 
the acoustic data collected from the 19 Jan 2023 daytime flow test in Figure ES-8. Due to the high 
background noise present during the day, the simulated leaks in Figure ES-8 showed no discernable 
change in the raw acoustic noise. Hence, a machine learning model trained on the raw acoustic noise 
would not be able to detect the simulated leaks. The leak-sensitive features used in Phase-I were 
developed specifically by DWS for such scenarios—to detect leaks obscured by background noise. 
An example of how the leak-sensitive features were able to separate leak data from non-leak data is 
shown in Figure ES-9. An overview of the main steps involved in baseline learning and leak 
detection model training and testing are shown in Figure ES-10. 
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Figure ES-8. Acoustic Summary for Flow Test with Details Shown in Table ES-1. 

 

Figure ES-9. Scatterplot and Corresponding Kernel Density Estimates of Acoustic Data 
from a Flow Test (ref. Table ES-1), after Transformation of Data into Leak Features. 

 

Figure ES-10. Overview of Baseline Learning & Leak Detection Model Testing Procedure. 
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4.2 LEAK DETECTION 

Features extracted from the acoustic data were used to train a suite of 11 unique, machine-learning 
models. For Phase-I, the minimum accuracy returned by the best AI leak detection model for each 
hydrant, across three different simulated leak events is shown in Table ES-4. Table ES-4 also 
shows that the performance of the AI leak detection models was consistent across hydrants and 
flow tests. The error margin across all three flow tests can be attributed to several factors, including 
erroneous or mislabeled points in the dataset and the limitation on the type of viable machine 
models given the limited amount of data available in Phase-I. 

Insights from time-frequency analysis led to improvements in Phase-II's leak detection process. 
These included modifications to the filter bank used for pre-processing, enhancing the distinction 
between nearby and distant leaks. The F1 scores (a measure of a model’s accuracy) for each model 
from the baseline and leak detection in Phase-II are shown in Figure ES-11a and ES-11b, 
respectively. During baseline learning (Figure ES-11a), the XGBoost and GBM Classifier models 
were identified as the best-performing models, achieving the maximum F1 score of 100% across 
all hydrants. During the leak detection phase (Figure ES-11b), the XGBoost model continued to 
achieve the highest overall F1 score, with a minimum F1 score of 98% observed on Hydrants 3 and 
4. Similarly, strong performance between the baseline and leak detection phases verified that the 
models were not overfitting the training data, with only a marginal reduction in F1 score of 1-3% 
observed on Hydrants 1, 3 and 4. 

Table ES-4. Minimum Accuracy Returned by AI leak detection models on test datasets. 

Evaluation Metric Test Case Flow 
Rates 

Hydrant Overall 
1 2 3 4 5 

AI Leak 
Detection 

Minimum AI 
Leak Detection 
Model Accuracy 

Flow Test 1 - 
Daytime (Peak 
System Usage) 

5-10 
gal/min 

flow 
93.80% 96.70% 98.00% 99.50% 97.60% 97.1% 

Flow Test 2 - 
Daytime (Peak 
System Usage) 

8-25 
gal/min 

flow 
95.70% 94.90% 100% 97.70% 96.20% 96.9% 

Flow Test 3 - 
Nighttime (Low 
System Usage) 

10 ,20, 30 
gal/min 

flow 
-- 100.00% -- -- 93.50% 96.8% 
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(a) (b) 

Figure ES-11. Heatmap of Model Performance Across Hydrants for: (a) Baseline (b) Leak 
Detection. 

4.3 TRANSIENT PRESSURE DETECTION 

The transition to wireless communications in Phase-II provided the ability to detect, capture, and 
relay potential structural damaging pressure transients and pressure pattern anomalies in the 
network in real time. Transients were automatically captured by the device when the pressure 
measured on the device exceeded a set of user-defined thresholds. When a transient capture was 
triggered, a complete waveform of the transient event was generated by saving the raw data sampled 
from 30 seconds preceding the event trigger to 120 seconds following the trigger. These sampling 
parameters are also user-configurable. An example of a pressure transient captured by the 
hydrant.AI system is depicted in Figure ES-12. Each transient event detected in the system would 
generate an “Event Card” on the user interface, which could be accessed to view the detailed 
waveform as shown in Figure ES-12. In addition, an email or SMS alert could be configured to 
notify the appropriate parties immediately to enable a timely response, if necessary. 
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Figure ES-12. Snapshot of a Pressure Transient Captured by the hydrant.AI System at 
Hydrant 3. 

4.4 LEAK LOCALIZATION 

The leak locations were estimated using a probabilistic method developed at UCLA [3]. The 
method used cross-correlation-based maximum likelihood estimation (MLE) to estimate the most 
likely location between two sensor pairs using the filtered acoustic measurements at the sensor 
locations. In the step involving time delay selection from cross-correlation function plots, a 
threshold was set to estimate the leak location. It was found that this threshold affected the leak 
location. The leak location estimate for an optimal threshold is shown in Figure ES-13 for Phase-I 
and Phase-II testing (details of the tests were mentioned in Tables ES-1 and ES-3). In Phase-I, the 
simulated leak was at the sampling station; however, for Phase-II the simulated leak was shifted 
to Hydrant 2 due to its compatibility with the automated leak equipment. 

The distance between the leak estimate and the actual leak location were 21 m and 32 m for Phase-
I and Phase-II results, respectively. The errors were primarily attributed to the following: (a) 
inaccurate pipeline topographical maps leading to large uncertainties in the estimated pipe lengths; 
and (b) the clock drift in the crystal-based real-time clocks used in the sensor stations leading to 
desynchronization in measured time thereby yielding errors in the time delays of arrival. The 
localization results were promising, considering that, even with these large uncertainties, the 
localization results were localized to the pipe segment level (hence, satisfying the performance 
criteria) and were within 5% of the total pipeline length in the WDN in which the leak search was 
performed. It is important to underscore that the localization aspect of this technology was only 
meant to provide an approximate region where the leak was present. Once a leak was detected and 
localized to a region, the expectation was that inspection and maintenance crews would be 
deployed to pinpoint the leak for repair activities. 
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(a) (b) 
Figure ES-13. Leak Location Estimate Obtained for an Optimal Cross-correlation 

Threshold from a Leak Simulated at (a) the Sampling Station for Data Acquired at 11:54 
AM on 19-Jan-2023 (Phase-I), (b) Hydrant 2 for Data Acquired as 12:52 AM on 3-Nov-

2023 (Phase-II). 

5.0 COST ASSESSMENT 

A simple cost analysis for the technology was constructed by evaluating primary costs against 
expected returns for a 5-unit deployment in a known high-risk or trouble region where leaks and 
water loss are expected to be found. The analysis was conducted over the 10-year expected useful 
life of the sensing stations. The main cost factors for this model comprised non-recurring capital 
costs (e.g., sensing stations, batteries) and installation costs and annually recurring operating costs 
(e.g., server upkeep, cellular data plans). The total capital cost for a 5-unit deployment (1 additional 
spare unit and battery) in year 1 was determined to be $66,750, and the annual operating cost was 
determined to be $5,700. 

The implementation of these sensors allowed for the identification and repair of existing leaks as 
well as subsequent early detection and prevention of new leaks within the monitored area of the 
network. Consequently, the expected water savings or return on investment (ROI) could be assumed 
to be constant year-over-year. The assumptions result in a linear relationship between the number 
of the units deployed and cost or ROI, allowing the calculation to be scaled to any size of 
deployments or capital investment. 

Two types of leaks were considered in the water savings calculations: small, non-surfacing leaks (5-
30 GPM) which can run undetected for upwards of a year at a time; and, larger, sudden leaks or 
breaks, which typically exhibit significantly higher flowrates (100-122 GPM), but surface shortly 
after forming. The average annual 2024 water rate of $10.27/kgal for NBVC Port Hueneme was 
used as the cost basis for the analysis. Based on these parameters, the estimated range for the total 
expected annual water savings of the system was determined to be between $38,400 and $177,000. 

The life cycle cost analysis using the average of these two extremes, is shown in Table ES-5, and 
demonstrates that the payback period where the water savings exceeds the net present value occurs 
within the first year, showing that the system can quickly recoup the initial capital investment 
immediately through identification and subsequent repair of existing but unknown leaks in the 
distribution system. 
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Table ES-5. Life-cycle Cost Analysis. 

Life-cycle Cost Analysis - 5 Sensors 

Year Discount 
Factor 

Operating Costs Expected Water 
Savings 

Net Present Value 

0 1.0000 $ (5,700) $ 107,784 $ 40,409.5 

1 0.9709 $ (5,534) $ 104,645 $ 139,520.6 

2 0.9426 $ (5,373) $ 101,597 $ 235,745.0 

3 0.9151 $ (5,216) $ 98,638 $ 329,166.8 

4 0.8885 $ (5,064) $ 95,765 $ 419,867.5 

5 0.8626 $ (4,917) $ 92,976 $ 507,926.5 

6 0.8375 $ (4,774) $ 90,268 $ 593,420.6 

7 0.8131 $ (4,635) $ 87,639 $ 676,424.6 

8 0.7894 $ (4,500) $ 85,086 $ 757,011.0 

9 0.7664 $ (4,369) $ 82,608 $ 835,250.3 

10 0.7441 $ (4,241) $ 80,202 $ 911,210.7 

6.0 IMPLEMENTATION ISSUES 

The implementation issues encountered throughout the project can be categorized into 
regulatory/cybersecurity-related or technical-related. Several measures were taken to mitigate the 
regulatory or cybersecurity-related barriers to implementation. The development and testing of an 
‘offline’ version of the monitoring technology in Phase-I was one such approach. While viable, 
the drawbacks of an offline deployment, such as the asynchronous nature of data collection and 
information delivery, motivated the pursuit of the wireless implementation in Phase-II. In Phase- 
II, it was determined that DoD deployment of the wirelessly interconnected AI leak detection 
system would require an Authority to Operate (ATO) to maintain imposed cybersecurity protocols 
per DoD Instruction 8510.01, Risk Management Framework (RMF) for DoD Information 
Technology. In an effort to expedite the ATO process for future deployments, a partial, site-
agnostic RMF package was developed for the system in Phase-II. The RMF package was expected 
to reduce documentation development efforts by between 70 to 80 percent and subsequently the 
time necessary to obtain a final ATO. 

In Phase-I, the primary technical issues encountered during the demonstration were all in relation 
to the lack of wireless connectivity between the sensing stations, GPS satellites, and central server. 
The lack of wireless connectivity meant that data collection was asynchronous, requiring an 
individual to physically travel to each sensing station to collect data from each device for transfer 
to the central server. The asynchronous nature of the data collection meant that potential actionable 
information pertaining to leaks or pressure events could not be delivered in real-time. Additionally, 
precise time synchronization between devices for leak localization between devices was also 
difficult to achieve. The addition of wireless communication and GPS modules in Phase-II helped 
to alleviate most of the concerns identified in Phase-I, enabling data and model insights to be 
delivered in real-time. Furthermore, the GPS was able to act as a datum for clock synchronization. 
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While the addition of GPS resulted in a noticeable improvement in localization accuracy, 
additional precision in clock synchronization (in addition to good quality data on the pipe 
configurations) would be required to further reduce localization errors. Further changes to improve 
the time synchronization across devices were identified at the end of Phase-II and will be 
implemented in the firmware for future deployments. 
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